Pharma R&D Today

Ideas and Insight supporting all stages of Drug Discovery & Development

Select category
Search this blog

AI-driven innovation in Life Sciences: Data Science & AI amplifies your innovative drug R&D capabilities

Posted on November 4th, 2021 by in AI & Data

If you work in Life Sciences & Health, you’re likely aware of what Data Science and AI can bring to the table when it comes to sparking innovation. However, if you are not Big Pharma, it’s the how that slows down most LSH companies and organizations. We believe that Elsevier’s road-tested data and semantic technologies can address the challenges of Life Science data.

Why is everyone talking about Digital Transformation?

Admittedly, digital transformation has already become a rather vague catch-all catchphrase. But at its root, it’s about using data and technology to derive business benefit, whether it is speedier innovation, amplified risk management or greater efficiency. This path usually involves applying AI to this data.

AI is clearly no longer “up-and-coming”. For example, the use of AI by U.S. businesses has risen by a third between 2018 and 2020. It’s become a key competitive differentiator, backed by a clear causal link: greater digital maturity means greater financial performance.

“When I first started in this role, outside of Silicon Valley it was a real challenge to deliver AI- and machine-learning-powered innovation at scale,” says Mark Sheehan, Elsevier’s VP of Data Science for the Life Sciences. “And so, any tangible benefits were limited. But now there are a number of technologies to build on to drive the state-of-the-art forward. We’ve worked really hard at Elsevier in recent years to leverage these technologies and ‘pave our roads’ for easy and fast AI development and deployment.” 

In other words, AI’s time has truly come.

Search, discover, predict

For pharmaceutical companies undertaking the long and expensive road to bringing a new drug to market, AI can make all the difference in terms of saving time and money. For example, it can search for the latest related research. It can discover connections between chemical structures and specific biological activities like the Biology Knowledge Graph, which provides deep evidence for disease biology related decisions. It can even work to predict optimal reaction conditions so you know what to do – or not to do – next.

“The data science teams in Elsevier are not only bringing our wealth of high-quality historical data and scientific expertise to the table,” says Mark. “but we’re also using cutting-edge AI and machine learning technologies to power our own products and services, such as with our chemical database Reaxys and our biomedical research database Embase. Meanwhile, we’re also working with a whole range of partners to build an impressive research pipeline for AI-driven innovation in the Life Sciences.”

Turning data into insights: in search of smarter pipelines

The sense of urgency brought on by COVID-19 exposed a clear trend: data-driven organizations tend to be more resilient and better able to achieve better and faster results – in terms of steering change, maintaining revenue and pushing through innovation. In other words, they are able to transform their data into relevant and actionable insights that create value.

Many felt left behind. Some began to wonder how they themselves could accelerate – or even start – their own process of digital transformation.

“Elsevier had already started well down this road of greater automation and leveraging of AI prior to the pandemic,” notes Mark. “And because we already worked closely together across distributed agile teams internally and with our partners, we were even able to accelerate our adoption of new technologies and pace of innovation – despite the challenge of multiple lockdowns and not being able to meet face-to-face.”

Research, develop, predict

Elsevier has a wide range of road-tested and respected R&D solutions in place for those who are not necessarily data scientists but still want to leverage the benefits of AI.

For instance, for best-in-class retrosynthesis, the previously mentioned Reaxys was recently expanded to better aid in the development of new compounds and molecules – while keeping you up-to-date on the latest patents. Released during the pandemic, Entellect’s Reaction Workbench supports predictive reaction capabilities and even allows you to create your own algorithms.

The tip of the innovation iceberg

“Our customers need to innovate faster, and therefore need to use machine enrichment and prediction to aid and accelerate their decision-making and prioritizing for research,” says Mark. “As a result, the pace and scale of how we employed technologies in Elsevier Life Sciences also required a gear change.” 

For example, five years ago, human curators at Elsevier closely excerpted articles from around 400 journal titles a year for Reaxys, but now with machine support the number has risen to 16,000 journals. In addition, Elsevier has driven an even bigger growth in patents coverage with 20 million patents processed so far in 2021 alone.

“Certainly, many of our customers are surprised by what we already offer. But I’m confident they’ll be even more impressed by what we have coming up in our development pipeline for the next rounds of innovation. The journey has only just begun!”

R&D Solutions for Pharma & Life Sciences

We're happy to discuss your needs and show you how Elsevier's Solution can help.

Contact Sales