Pharma R&D Today
Ideas and Insight supporting all stages of Drug Discovery & Development
Treating Pharma Data as an Asset: moving from an application centric to an information-centric organization – presented by Dr. Martin Romacker, Roche
Posted on July 14th, 2020 by Ani Marrs in Pharma R&D
Pharma knows there is a need for clean, reusable, FAIR data to fuel effective machine learning-driven R&D – but driving effective information and knowledge management is a long process, needing a step change where individuals learn their roles in data stewardship and reduce them to practice in a way that doesn’t constrain or impede their research activities.
In our recent webinar, Pharma Data as an Asset: Moving from an application-centric to an information-centric organization, Dr. Martin Romacker, Senior Principal Scientist in Scientific Solution Delivery and Architecture at Roche, talked about how pharma considers data as an asset, but historically does not treat it as such – using the oft-cited ‘data is the new oil’ to metaphorically illustrate how much value is lost from poorly managed data (equivalent to the economic wastage lost in natural gas flares during oil production).
In order to embed good data management practices, pharma needs to start taking account of the unplanned or hidden costs – e.g. ETL (extract, transform, load) processes, data cleansing, semantic data integration, etc. They also need to be clearer that any created or acquired data that do not comply with the FAIR (Findable, Accessible, Interoperable, Reusable) Principles during the production process immediately lose value, adversely affecting innovation and output right across the drug discovery and development process.
During the session, Dr. Romacker demonstrated where Roche is implementing FAIR Data in core areas, including:
* Implementing a comprehensive data value chain: fully integrating semantic data management to ensure all incoming data and metadata are FAIR to enable retrospective or secondary data use far into the future
—Underpinned by change management around data citizenship & sharing, including a FAIR Data Playbook.
* The Roche Data Commons (RDC) and the layers required to ensure not only FAIR data, but quality data, emphasizing that for effective output you need both, in addition to the fact that the infrastructure and services need to be FAIR too – not just the data
All of this is particularly important in light of one of Dr. Romacker’s key points, which is that while technologies and applications will come and go continuously, the data are always going to be there, so it is much better to make them reusable as soon as possible in their lifecycle.
Central to this whole process is the researcher. A FAIR data implementation must not impede or burden the researcher, but rather they should feel empowered to own FAIRification of their data, while being served by an internal infrastructure and technologies that enable them to do this easily.
Driving this change requires not only internal change management, and a willingness on all sides to engage on this topic, but goes beyond internal change throughout the entire scientific community. Pharma, partners and academia need to all work together on an open public/private infrastructure supporting reusable FAIR Data.
Overall, the investment and effort now will pay off downstream, with a more cost-effective R&D process where FAIR Data is central, and the scientific community can react faster, with greater insight, to deliver what patients need.
Watch the webinar and download the slides here
To get involved or get started, download the Pistoia Alliance FAIR Toolkit.
R&D Solutions for Pharma & Life Sciences
We're happy to discuss your needs and show you how Elsevier's Solution can help.Contact Sales
Ani Marrs
Senior Marketing Manager - Entellect
Related posts
- Pharma’s path to Net Zero
- AI-driven innovation in life sciences: Data as data should be
- Accelerating synthetic chemistry with a predictive retrosynthesis solution
- An Update on Global Availability of COVID-19 Vaccines from Editor of The Lancet
- AI Disease Modeling Supports Precision Medicine for Cancer
